--- layout: docs title: Tour description: A detailed overview of ECMAScript 6 features. permalink: /docs/tour/ redirect_from: /features.html ---
es6features
This document is taken from Luke Hoban's excellent es6features repo. Go give it a star on GitHub!
## Introduction > ECMAScript 6 is the upcoming version of the ECMAScript standard. This standard is targeting ratification in June 2015. ES6 is a significant update to the language, and the first update to the language since ES5 was standardized in 2009. Implementation of these features in major JavaScript engines is [underway now](http://kangax.github.io/es5-compat-table/es6/). See the [draft ES6 standard](https://people.mozilla.org/~jorendorff/es6-draft.html) for full specification of the ECMAScript 6 language. ## ECMAScript 6 Features ### Arrows Arrows are a function shorthand using the `=>` syntax. They are syntactically similar to the related feature in C#, Java 8 and CoffeeScript. They support both expression and statement bodies. Unlike functions, arrows share the same lexical `this` as their surrounding code. ```js // Expression bodies var odds = evens.map(v => v + 1); var nums = evens.map((v, i) => v + i); // Statement bodies nums.forEach(v => { if (v % 5 === 0) fives.push(v); }); // Lexical this var bob = { _name: "Bob", _friends: [], printFriends() { this._friends.forEach(f => console.log(this._name + " knows " + f)); } } ``` ### Classes ES6 classes are a simple sugar over the prototype-based OO pattern. Having a single convenient declarative form makes class patterns easier to use, and encourages interoperability. Classes support prototype-based inheritance, super calls, instance and static methods and constructors. ```js class SkinnedMesh extends THREE.Mesh { constructor(geometry, materials) { super(geometry, materials); this.idMatrix = SkinnedMesh.defaultMatrix(); this.bones = []; this.boneMatrices = []; //... } update(camera) { //... super.update(); } static defaultMatrix() { return new THREE.Matrix4(); } } ``` ### Enhanced Object Literals Object literals are extended to support setting the prototype at construction, shorthand for `foo: foo` assignments, defining methods and making super calls. Together, these also bring object literals and class declarations closer together, and let object-based design benefit from some of the same conveniences. ```js var obj = { // __proto__ __proto__: theProtoObj, // Shorthand for ‘handler: handler’ handler, // Methods toString() { // Super calls return "d " + super.toString(); }, // Computed (dynamic) property names [ 'prop_' + (() => 42)() ]: 42 }; ```REPL
Be sure to try these features out in the online REPL.
### Template Strings Template strings provide syntactic sugar for constructing strings. This is similar to string interpolation features in Perl, Python and more. Optionally, a tag can be added to allow the string construction to be customized, avoiding injection attacks or constructing higher level data structures from string contents. ```js // Basic literal string creation `In JavaScript '\n' is a line-feed.` // Multiline strings `In JavaScript this is not legal.` // Construct a DOM query var name = "Bob", time = "today"; `Hello ${name}, how are you ${time}?` // Construct an HTTP request prefix is used to interpret the replacements and construction GET`http://foo.org/bar?a=${a}&b=${b} Content-Type: application/json X-Credentials: ${credentials} { "foo": ${foo}, "bar": ${bar}}`(myOnReadyStateChangeHandler); ``` ### Destructuring Destructuring allows binding using pattern matching, with support for matching arrays and objects. Destructuring is fail-soft, similar to standard object lookup `foo["bar"]`, producing `undefined` values when not found. ```js // list matching var [a, , b] = [1,2,3]; // object matching var { op: a, lhs: { op: b }, rhs: c } = getASTNode() // object matching shorthand // binds `op`, `lhs` and `rhs` in scope var {op, lhs, rhs} = getASTNode() // Can be used in parameter position function g({name: x}) { console.log(x); } g({name: 5}) // Fail-soft destructuring var [a] = []; a === undefined; // Fail-soft destructuring with defaults var [a = 1] = []; a === 1; ``` ### Default + Rest + Spread Callee-evaluated default parameter values. Turn an array into consecutive arguments in a function call. Bind trailing parameters to an array. Rest replaces the need for `arguments` and addresses common cases more directly. ```js function f(x, y=12) { // y is 12 if not passed (or passed as undefined) return x + y; } f(3) == 15 ``` ```js function f(x, ...y) { // y is an Array return x * y.length; } f(3, "hello", true) == 6 ``` ```js function f(x, y, z) { return x + y + z; } // Pass each elem of array as argument f(...[1,2,3]) == 6 ``` ### Let + Const Block-scoped binding constructs. `let` is the new `var`. `const` is single-assignment. Static restrictions prevent use before assignment. ```js function f() { { let x; { // okay, block scoped name const x = "sneaky"; // error, const x = "foo"; } // error, already declared in block let x = "inner"; } } ``` ### Iterators + For..Of Iterator objects enable custom iteration like CLR IEnumerable or Java Iteratable. Generalize `for..in` to custom iterator-based iteration with `for..of`. Don’t require realizing an array, enabling lazy design patterns like LINQ. ```js let fibonacci = { [Symbol.iterator]() { let pre = 0, cur = 1; return { next() { [pre, cur] = [cur, pre + cur]; return { done: false, value: cur } } } } } for (var n of fibonacci) { // truncate the sequence at 1000 if (n > 1000) break; print(n); } ``` Iteration is based on these duck-typed interfaces (using [TypeScript](http://typescriptlang.org) type syntax for exposition only): ```ts interface IteratorResult { done: boolean; value: any; } interface Iterator { next(): IteratorResult; } interface Iterable { [Symbol.iterator](): Iterator } ``` ### Generators Generators simplify iterator-authoring using `function*` and `yield`. A function declared as function* returns a Generator instance. Generators are subtypes of iterators which include additional `next` and `throw`. These enable values to flow back into the generator, so `yield` is an expression form which returns a value (or throws). Note: Can also be used to enable ‘await’-like async programming, see also ES7 `await` proposal. ```js var fibonacci = { [Symbol.iterator]: function*() { var pre = 0, cur = 1; for (;;) { var temp = pre; pre = cur; cur += temp; yield cur; } } } for (var n of fibonacci) { // truncate the sequence at 1000 if (n > 1000) break; print(n); } ``` The generator interface is (using [TypeScript](http://typescriptlang.org) type syntax for exposition only): ```ts interface Generator extends Iterator { next(value?: any): IteratorResult; throw(exception: any); } ``` ### Comprehensions Array and generator comprehensions provide simple declarative list processing similar as used in many functional programming patterns. ```js // Array comprehensions var results = [ for(c of customers) if (c.city == "Seattle") { name: c.name, age: c.age } ] // Generator comprehensions var results = ( for(c of customers) if (c.city == "Seattle") { name: c.name, age: c.age } ) ``` ### Unicode Non-breaking additions to support full Unicode, including new unicode literal form in strings and new RegExp `u` mode to handle code points, as well as new APIs to process strings at the 21bit code points level. These additions support building global apps in JavaScript. ```js // same as ES5.1 "𠮷".length == 2 // new RegExp behaviour, opt-in ‘u’ "𠮷".match(/./u)[0].length == 2 // new form "\u{20BB7}"=="𠮷" == "\uD842\uDFB7" // new String ops "𠮷".codePointAt(0) == 0x20BB7 // for-of iterates code points for(var c of "𠮷") { console.log(c); } ``` ### Modules Language-level support for modules for component definition. Codifies patterns from popular JavaScript module loaders (AMD, CommonJS). Runtime behaviour defined by a host-defined default loader. Implicitly async model – no code executes until requested modules are available and processed. ```js // lib/math.js export function sum(x, y) { return x + y; } export var pi = 3.141593; ``` ```js // app.js module math from "lib/math"; alert("2π = " + math.sum(math.pi, math.pi)); ``` ```js // otherApp.js import {sum, pi} from "lib/math"; alert("2π = " + sum(pi, pi)); ``` Some additional features include `export default` and `export *`: ```js // lib/mathplusplus.js export * from "lib/math"; export var e = 2.71828182846; export default function(x) { return Math.exp(x); } ``` ```js // app.js module math from "lib/mathplusplus"; import exp from "lib/mathplusplus"; alert("2π = " + exp(math.pi, math.e)); ```
__proto__support comes from the JavaScript engine running your program. Although most support the now standard property, some do not.
### Module Loaders Module loaders support: - Dynamic loading - State isolation - Global namespace isolation - Compilation hooks - Nested virtualization The default module loader can be configured, and new loaders can be constructed to evaluated and load code in isolated or constrained contexts. ```js // Dynamic loading – ‘System’ is default loader System.import('lib/math').then(function(m) { alert("2π = " + m.sum(m.pi, m.pi)); }); // Create execution sandboxes – new Loaders var loader = new Loader({ global: fixup(window) // replace ‘console.log’ }); loader.eval("console.log('hello world!');"); // Directly manipulate module cache System.get('jquery'); System.set('jquery', Module({$: $})); // WARNING: not yet finalized ```Module Formatters
6to5 can transpile ES6 Modules to several different formats including Common.js, AMD, System, and UMD. You can even create your own. For more details see the modules docs.
Additional polyfill needed
Since 6to5 defaults to using common.js modules, it does not include the polyfill for the module loader api. Get it here.
### Map + Set + WeakMap + WeakSet Efficient data structures for common algorithms. WeakMaps provides leak-free object-key’d side tables. ```js // Sets var s = new Set(); s.add("hello").add("goodbye").add("hello"); s.size === 2; s.has("hello") === true; // Maps var m = new Map(); m.set("hello", 42); m.set(s, 34); m.get(s) == 34; // Weak Maps var wm = new WeakMap(); wm.set(s, { extra: 42 }); wm.size === undefined // Weak Sets var ws = new WeakSet(); ws.add({ data: 42 }); // Because the added object has no other references, it will not be held in the set ```Using Module Loader
In order to use this, you'll need to tell 6to5 to use the
systemmodule formatter. Also be sure to check out System.js
### Proxies Proxies enable creation of objects with the full range of behaviors available to host objects. Can be used for interception, object virtualization, logging/profiling, etc. ```js // Proxying a normal object var target = {}; var handler = { get: function (receiver, name) { return `Hello, ${name}!`; } }; var p = new Proxy(target, handler); p.world === 'Hello, world!'; ``` ```js // Proxying a function object var target = function () { return 'I am the target'; }; var handler = { apply: function (receiver, ...args) { return 'I am the proxy'; } }; var p = new Proxy(target, handler); p() === 'I am the proxy'; ``` There are traps available for all of the runtime-level meta-operations: ```js var handler = { get:..., set:..., has:..., deleteProperty:..., apply:..., construct:..., getOwnPropertyDescriptor:..., defineProperty:..., getPrototypeOf:..., setPrototypeOf:..., enumerate:..., ownKeys:..., preventExtensions:..., isExtensible:... } ```Support via polyfill
In order to support Promises you must include the 6to5 Polyfill.
### Symbols Symbols enable access control for object state. Symbols allow properties to be keyed by either `string` (as in ES5) or `symbol`. Symbols are a new primitive type. Optional `name` parameter used in debugging - but is not part of identity. Symbols are unique (like gensym), but not private since they are exposed via reflection features like `Object.getOwnPropertySymbols`. ```js (function() { // module scoped symbol var key = Symbol("key"); function MyClass(privateData) { this[key] = privateData; } MyClass.prototype = { doStuff: function() { ... this[key] ... } }; })(); var c = new MyClass("hello") c["key"] === undefined ```Unsupported feature
Due to the limitations of ES5, Proxies cannot be transpiled or polyfilled. See support from various JavaScript engines.
### Subclassable Built-ins In ES6, built-ins like `Array`, `Date` and DOM `Element`s can be subclassed. Object construction for a function named `Ctor` now uses two-phases (both virtually dispatched): - Call `Ctor[@@create]` to allocate the object, installing any special behavior - Invoke constructor on new instance to initialize The known `@@create` symbol is available via `Symbol.create`. Built-ins now expose their `@@create` explicitly. ```js // Pseudo-code of Array class Array { constructor(...args) { /* ... */ } static [Symbol.create]() { // Install special [[DefineOwnProperty]] // to magically update 'length' } } // User code of Array subclass class MyArray extends Array { constructor(...args) { super(...args); } } // Two-phase 'new': // 1) Call @@create to allocate object // 2) Invoke constructor on new instance var arr = new MyArray(); arr[1] = 12; arr.length == 2 ``` ### Math + Number + String + Object APIs Many new library additions, including core Math libraries, Array conversion helpers, and Object.assign for copying. ```js Number.EPSILON Number.isInteger(Infinity) // false Number.isNaN("NaN") // false Math.acosh(3) // 1.762747174039086 Math.hypot(3, 4) // 5 Math.imul(Math.pow(2, 32) - 1, Math.pow(2, 32) - 2) // 2 "abcde".contains("cd") // true "abc".repeat(3) // "abcabcabc" Array.from(document.querySelectorAll('*')) // Returns a real Array Array.of(1, 2, 3) // Similar to new Array(...), but without special one-arg behavior [0, 0, 0].fill(7, 1) // [0,7,7] [1,2,3].findIndex(x => x == 2) // 1 ["a", "b", "c"].entries() // iterator [0, "a"], [1,"b"], [2,"c"] ["a", "b", "c"].keys() // iterator 0, 1, 2 ["a", "b", "c"].values() // iterator "a", "b", "c" Object.assign(Point, { origin: new Point(0,0) }) ```Support via polyfill
In order to support Promises you must include the 6to5 Polyfill.
### Binary and Octal Literals Two new numeric literal forms are added for binary (`b`) and octal (`o`). ```js 0b111110111 === 503 // true 0o767 === 503 // true ```Limited support from polyfill
Most of these APIs are supported by the 6to5 Polyfill. However, certain features are omitted for various reasons (ie.
String.prototype.normalizeneeds a lot of additional code to support). You can find more polyfills here.
### Promises Promises are a library for asynchronous programming. Promises are a first class representation of a value that may be made available in the future. Promises are used in many existing JavaScript libraries. ```js function timeout(duration = 0) { return new Promise((resolve, reject) => { setTimeout(resolve, duration); }) } var p = timeout(1000).then(() => { return timeout(2000); }).then(() => { throw new Error("hmm"); }).catch(err => { return Promise.all([timeout(100), timeout(200)]); }) ```Only supports literal form
6to5 is only able to transform
0o767and notNumber('0o767').
### Reflect API Full reflection API exposing the runtime-level meta-operations on objects. This is effectively the inverse of the Proxy API, and allows making calls corresponding to the same meta-operations as the proxy traps. Especially useful for implementing proxies. ```js // No sample yet ```Support via polyfill
In order to support Promises you must include the 6to5 Polyfill.
### Tail Calls Calls in tail-position are guaranteed to not grow the stack unboundedly. Makes recursive algorithms safe in the face of unbounded inputs. ```js function factorial(n, acc = 1) { 'use strict'; if (n <= 1) return acc; return factorial(n - 1, n * acc); } // Stack overflow in most implementations today, // but safe on arbitrary inputs in eS6 factorial(100000) ```Limited support from polyfill
Core.js only currently supports
Reflect.ownKeys, if you would like a much more complete Reflect API, include another polyfill such as Harmony Reflect.
Unsupported feature
Due to high complexity of transpiling Tail Calls, 6to5 does not currently have them implemented. See #256.