babel/packages/babel-traverse/src/path/introspection.js
Justin Ridgewell de1431e8c6 Replace arrow expression body with block statement
Original PR: https://github.com/babel/babel/pull/2469. Seems this got
lost in the v6 changes.

- - -

Without this, the only way to replace the arrow function is to either
manually override its `node.body`, or duplicate the arrow:

```js
// Old
ArrowFunctionExpression: function (node) {
  node.body = t.blockStatement(...);
  // Or
  return t.ArrowFunctionExpression(
    node.params,
    t.blockStatement(...),
    node.async
  );
}

// New
ArrowFunctionExpression: function() {
  this.get("body").replaceWith(t.blockStatement(...));
}
```
2016-02-20 04:36:40 -05:00

427 lines
12 KiB
JavaScript

// This file contains methods responsible for introspecting the current path for certain values.
import type NodePath from "./index";
import includes from "lodash/collection/includes";
import * as t from "babel-types";
/**
* Match the current node if it matches the provided `pattern`.
*
* For example, given the match `React.createClass` it would match the
* parsed nodes of `React.createClass` and `React["createClass"]`.
*/
export function matchesPattern(pattern: string, allowPartial?: boolean): boolean {
// not a member expression
if (!this.isMemberExpression()) return false;
let parts = pattern.split(".");
let search = [this.node];
let i = 0;
function matches(name) {
let part = parts[i];
return part === "*" || name === part;
}
while (search.length) {
let node = search.shift();
if (allowPartial && i === parts.length) {
return true;
}
if (t.isIdentifier(node)) {
// this part doesn't match
if (!matches(node.name)) return false;
} else if (t.isLiteral(node)) {
// this part doesn't match
if (!matches(node.value)) return false;
} else if (t.isMemberExpression(node)) {
if (node.computed && !t.isLiteral(node.property)) {
// we can't deal with this
return false;
} else {
search.unshift(node.property);
search.unshift(node.object);
continue;
}
} else if (t.isThisExpression(node)) {
if (!matches("this")) return false;
} else {
// we can't deal with this
return false;
}
// too many parts
if (++i > parts.length) {
return false;
}
}
return i === parts.length;
}
/**
* Check whether we have the input `key`. If the `key` references an array then we check
* if the array has any items, otherwise we just check if it's falsy.
*/
export function has(key): boolean {
let val = this.node && this.node[key];
if (val && Array.isArray(val)) {
return !!val.length;
} else {
return !!val;
}
}
/**
* Description
*/
export function isStatic() {
return this.scope.isStatic(this.node);
}
/**
* Alias of `has`.
*/
export let is = has;
/**
* Opposite of `has`.
*/
export function isnt(key): boolean {
return !this.has(key);
}
/**
* Check whether the path node `key` strict equals `value`.
*/
export function equals(key, value): boolean {
return this.node[key] === value;
}
/**
* Check the type against our stored internal type of the node. This is handy when a node has
* been removed yet we still internally know the type and need it to calculate node replacement.
*/
export function isNodeType(type: string): boolean {
return t.isType(this.type, type);
}
/**
* This checks whether or not we're in one of the following positions:
*
* for (KEY in right);
* for (KEY;;);
*
* This is because these spots allow VariableDeclarations AND normal expressions so we need
* to tell the path replacement that it's ok to replace this with an expression.
*/
export function canHaveVariableDeclarationOrExpression() {
return (this.key === "init" || this.key === "left") && this.parentPath.isFor();
}
/**
* This checks whether we are swapping an arrow function's body between an
* expression and a block statement (or vice versa).
*
* This is because arrow functions may implicitly return an expression, which
* is the same as containing a block statement.
*/
export function canSwapBetweenExpressionAndStatement(replacement) {
if (this.key !== "body" || !this.parentPath.isArrowFunctionExpression()) {
return false;
}
if (this.isExpression()) {
return t.isBlockStatement(replacement);
} else if (this.isBlockStatement()) {
return t.isExpression(replacement);
}
return false;
}
/**
* Check whether the current path references a completion record
*/
export function isCompletionRecord(allowInsideFunction?) {
let path = this;
let first = true;
do {
let container = path.container;
// we're in a function so can't be a completion record
if (path.isFunction() && !first) {
return !!allowInsideFunction;
}
first = false;
// check to see if we're the last item in the container and if we are
// we're a completion record!
if (Array.isArray(container) && path.key !== container.length - 1) {
return false;
}
} while ((path = path.parentPath) && !path.isProgram());
return true;
}
/**
* Check whether or not the current `key` allows either a single statement or block statement
* so we can explode it if necessary.
*/
export function isStatementOrBlock() {
if (this.parentPath.isLabeledStatement() || t.isBlockStatement(this.container)) {
return false;
} else {
return includes(t.STATEMENT_OR_BLOCK_KEYS, this.key);
}
}
/**
* Check if the currently assigned path references the `importName` of `moduleSource`.
*/
export function referencesImport(moduleSource, importName) {
if (!this.isReferencedIdentifier()) return false;
let binding = this.scope.getBinding(this.node.name);
if (!binding || binding.kind !== "module") return false;
let path = binding.path;
let parent = path.parentPath;
if (!parent.isImportDeclaration()) return false;
// check moduleSource
if (parent.node.source.value === moduleSource) {
if (!importName) return true;
} else {
return false;
}
if (path.isImportDefaultSpecifier() && importName === "default") {
return true;
}
if (path.isImportNamespaceSpecifier() && importName === "*") {
return true;
}
if (path.isImportSpecifier() && path.node.imported.name === importName) {
return true;
}
return false;
}
/**
* Get the source code associated with this node.
*/
export function getSource() {
let node = this.node;
if (node.end) {
return this.hub.file.code.slice(node.start, node.end);
} else {
return "";
}
}
export function willIMaybeExecuteBefore(target) {
return this._guessExecutionStatusRelativeTo(target) !== "after";
}
/**
* Given a `target` check the execution status of it relative to the current path.
*
* "Execution status" simply refers to where or not we **think** this will execuete
* before or after the input `target` element.
*/
export function _guessExecutionStatusRelativeTo(target) {
// check if the two paths are in different functions, we can't track execution of these
let targetFuncParent = target.scope.getFunctionParent();
let selfFuncParent = this.scope.getFunctionParent();
// here we check the `node` equality as sometimes we may have different paths for the
// same node due to path thrashing
if (targetFuncParent.node !== selfFuncParent.node) {
let status = this._guessExecutionStatusRelativeToDifferentFunctions(targetFuncParent);
if (status) {
return status;
} else {
target = targetFuncParent.path;
}
}
let targetPaths = target.getAncestry();
if (targetPaths.indexOf(this) >= 0) return "after";
let selfPaths = this.getAncestry();
// get ancestor where the branches intersect
let commonPath;
let targetIndex;
let selfIndex;
for (selfIndex = 0; selfIndex < selfPaths.length; selfIndex++) {
let selfPath = selfPaths[selfIndex];
targetIndex = targetPaths.indexOf(selfPath);
if (targetIndex >= 0) {
commonPath = selfPath;
break;
}
}
if (!commonPath) {
return "before";
}
// get the relationship paths that associate these nodes to their common ancestor
let targetRelationship = targetPaths[targetIndex - 1];
let selfRelationship = selfPaths[selfIndex - 1];
if (!targetRelationship || !selfRelationship) {
return "before";
}
// container list so let's see which one is after the other
if (targetRelationship.listKey && targetRelationship.container === selfRelationship.container) {
return targetRelationship.key > selfRelationship.key ? "before" : "after";
}
// otherwise we're associated by a parent node, check which key comes before the other
let targetKeyPosition = t.VISITOR_KEYS[targetRelationship.type].indexOf(targetRelationship.key);
let selfKeyPosition = t.VISITOR_KEYS[selfRelationship.type].indexOf(selfRelationship.key);
return targetKeyPosition > selfKeyPosition ? "before" : "after";
}
export function _guessExecutionStatusRelativeToDifferentFunctions(targetFuncParent) {
let targetFuncPath = targetFuncParent.path;
if (!targetFuncPath.isFunctionDeclaration()) return;
// so we're in a completely different function, if this is a function declaration
// then we can be a bit smarter and handle cases where the function is either
// a. not called at all (part of an export)
// b. called directly
let binding = targetFuncPath.scope.getBinding(targetFuncPath.node.id.name);
// no references!
if (!binding.references) return "before";
let referencePaths: Array<NodePath> = binding.referencePaths;
// verify that all of the references are calls
for (let path of referencePaths) {
if (path.key !== "callee" || !path.parentPath.isCallExpression()) {
return;
}
}
let allStatus;
// verify that all the calls have the same execution status
for (let path of referencePaths) {
// if a reference is a child of the function we're checking against then we can
// safelty ignore it
let childOfFunction = !!path.find((path) => path.node === targetFuncPath.node);
if (childOfFunction) continue;
let status = this._guessExecutionStatusRelativeTo(path);
if (allStatus) {
if (allStatus !== status) return;
} else {
allStatus = status;
}
}
return allStatus;
}
/**
* Resolve a "pointer" `NodePath` to it's absolute path.
*/
export function resolve(dangerous, resolved) {
return this._resolve(dangerous, resolved) || this;
}
export function _resolve(dangerous?, resolved?): ?NodePath {
// detect infinite recursion
// todo: possibly have a max length on this just to be safe
if (resolved && resolved.indexOf(this) >= 0) return;
// we store all the paths we've "resolved" in this array to prevent infinite recursion
resolved = resolved || [];
resolved.push(this);
if (this.isVariableDeclarator()) {
if (this.get("id").isIdentifier()) {
return this.get("init").resolve(dangerous, resolved);
} else {
// otherwise it's a request for a pattern and that's a bit more tricky
}
} else if (this.isReferencedIdentifier()) {
let binding = this.scope.getBinding(this.node.name);
if (!binding) return;
// reassigned so we can't really resolve it
if (!binding.constant) return;
// todo - lookup module in dependency graph
if (binding.kind === "module") return;
if (binding.path !== this) {
let ret = binding.path.resolve(dangerous, resolved);
// If the identifier resolves to parent node then we can't really resolve it.
if (this.find((parent) => parent.node === ret.node)) return;
return ret;
}
} else if (this.isTypeCastExpression()) {
return this.get("expression").resolve(dangerous, resolved);
} else if (dangerous && this.isMemberExpression()) {
// this is dangerous, as non-direct target assignments will mutate it's state
// making this resolution inaccurate
let targetKey = this.toComputedKey();
if (!t.isLiteral(targetKey)) return;
let targetName = targetKey.value;
let target = this.get("object").resolve(dangerous, resolved);
if (target.isObjectExpression()) {
let props = target.get("properties");
for (let prop of (props: Array)) {
if (!prop.isProperty()) continue;
let key = prop.get("key");
// { foo: obj }
let match = prop.isnt("computed") && key.isIdentifier({ name: targetName });
// { "foo": "obj" } or { ["foo"]: "obj" }
match = match || key.isLiteral({ value: targetName });
if (match) return prop.get("value").resolve(dangerous, resolved);
}
} else if (target.isArrayExpression() && !isNaN(+targetName)) {
let elems = target.get("elements");
let elem = elems[targetName];
if (elem) return elem.resolve(dangerous, resolved);
}
}
}