2015-12-06 11:30:07 -05:00

218 lines
5.0 KiB
JavaScript

// This file contains that retrieve or validate anything related to the current paths ancestry.
import * as t from "babel-types";
import NodePath from "./index";
/**
* Call the provided `callback` with the `NodePath`s of all the parents.
* When the `callback` returns a truthy value, we return that node path.
*/
export function findParent(callback) {
let path = this;
while (path = path.parentPath) {
if (callback(path)) return path;
}
return null;
}
/**
* Description
*/
export function find(callback) {
let path = this;
do {
if (callback(path)) return path;
} while (path = path.parentPath);
return null;
}
/**
* Get the parent function of the current path.
*/
export function getFunctionParent() {
return this.findParent((path) => path.isFunction() || path.isProgram());
}
/**
* Walk up the tree until we hit a parent node path in a list.
*/
export function getStatementParent() {
let path = this;
do {
if (Array.isArray(path.container)) {
return path;
}
} while (path = path.parentPath);
}
/**
* Get the deepest common ancestor and then from it, get the earliest relationship path
* to that ancestor.
*
* Earliest is defined as being "before" all the other nodes in terms of list container
* position and visiting key.
*/
export function getEarliestCommonAncestorFrom(paths: Array<NodePath>): NodePath {
return this.getDeepestCommonAncestorFrom(paths, function (deepest, i, ancestries) {
let earliest;
let keys = t.VISITOR_KEYS[deepest.type];
for (let ancestry of (ancestries: Array)) {
let path = ancestry[i + 1];
// first path
if (!earliest) {
earliest = path;
continue;
}
// handle containers
if (path.listKey && earliest.listKey === path.listKey) {
// we're in the same container so check if we're earlier
if (path.key < earliest.key) {
earliest = path;
continue;
}
}
// handle keys
let earliestKeyIndex = keys.indexOf(earliest.parentKey);
let currentKeyIndex = keys.indexOf(path.parentKey);
if (earliestKeyIndex > currentKeyIndex) {
// key appears before so it's earlier
earliest = path;
}
}
return earliest;
});
}
/**
* Get the earliest path in the tree where the provided `paths` intersect.
*
* TODO: Possible optimisation target.
*/
export function getDeepestCommonAncestorFrom(paths: Array<NodePath>, filter?: Function): NodePath {
if (!paths.length) {
return this;
}
if (paths.length === 1) {
return paths[0];
}
// minimum depth of the tree so we know the highest node
let minDepth = Infinity;
// last common ancestor
let lastCommonIndex, lastCommon;
// get the ancestors of the path, breaking when the parent exceeds ourselves
let ancestries = paths.map((path) => {
let ancestry = [];
do {
ancestry.unshift(path);
} while ((path = path.parentPath) && path !== this);
// save min depth to avoid going too far in
if (ancestry.length < minDepth) {
minDepth = ancestry.length;
}
return ancestry;
});
// get the first ancestry so we have a seed to assess all other ancestries with
let first = ancestries[0];
// check ancestor equality
depthLoop: for (let i = 0; i < minDepth; i++) {
let shouldMatch = first[i];
for (let ancestry of (ancestries: Array)) {
if (ancestry[i] !== shouldMatch) {
// we've hit a snag
break depthLoop;
}
}
// next iteration may break so store these so they can be returned
lastCommonIndex = i;
lastCommon = shouldMatch;
}
if (lastCommon) {
if (filter) {
return filter(lastCommon, lastCommonIndex, ancestries);
} else {
return lastCommon;
}
} else {
throw new Error("Couldn't find intersection");
}
}
/**
* Build an array of node paths containing the entire ancestry of the current node path.
*
* NOTE: The current node path is included in this.
*/
export function getAncestry() {
let path = this;
let paths = [];
do {
paths.push(path);
} while (path = path.parentPath);
return paths;
}
export function inType() {
let path = this;
while (path) {
for (let type of (arguments: Array)) {
if (path.node.type === type) return true;
}
path = path.parentPath;
}
return false;
}
/**
* Check if we're inside a shadowed function.
*/
export function inShadow(key?) {
let path = this;
do {
if (path.isFunction()) {
let shadow = path.node.shadow;
if (shadow) {
// this is because sometimes we may have a `shadow` value of:
//
// { this: false }
//
// we need to catch this case if `inShadow` has been passed a `key`
if (!key || shadow[key] !== false) {
return path;
}
} else if (path.isArrowFunctionExpression()) {
return path;
}
// normal function, we've found our function context
return null;
}
} while (path = path.parentPath);
return null;
}